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Abstract. The local optimality conditions to polynomial optimization problems are a set of polynomial 
equations (plus some inequality conditions). With the recent techniques of Gr/Sbner bases one can 
find all solutions to such systems, and hence also find global optima. We give a short survey of these 
methods. We also apply them to a set of problems termed 'with exact solutions unknown' in the 
problem sets of Hock and Schittkowski. To these problems we give exact solutions. 
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1. Introduction 

When the objective and the constraints of a mathematical programming problem 
are polynominal, then the necessary conditions for local optima is a system of 
polynomial equations (plus some nonnegativity conditions). All solutions to such 
systems can in fact be found (modulo space and time requirements) by use of recent 
techniques based on Gr6bner bases, to be described below. Hence, by discarding 
solutions violating the nonnegativity conditions, one can find all local optima (plus 
some stationary points). By further evaluating the objective at these solutions, one 
can identify the global optima. 

This application of  Gr6bner bases to local optimality conditions is straightfor- 
ward, and we don't claim to be the first to note this. However, we want to draw the 
attention of  the mathematical programming community (and the global optimizers 
in particular) to this possibility. 

Thus, the current paper is a sort of tutorial introducing the optimizer to the use 
of Gr6bner bases in this context. 

In Section 2 we shortly review local optimality conditions, i.e. the Fritz-John and 
Karush-Kuhn-Tucker conditions, with special reference to Gr6bner bases. Section 
3 covers the relevant part of Gr6bner base theory, without proofs though. It gives 
a concrete account of the computational machine, the Buchberger algorithm. 

This account has enough detail, so that it can be applied by those who want to 
try. However, many algebraic programming systems, like Maple have routines for 
Gr6bner base operations. Hence it is much easier to use those. 
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In Section 4 we apply these techniques to a specific example to show how it 
works. 

In Appendix A we give global optima to optimization problems that are marked 
as practical problems (i.e. 'with exact solution unknown') in the problem sets of 
Hock & Schittkowski [4] and Schittkowski [6]. For some or all of these problems 
global optima may of course have been computed since 1981 or 1987 respective- 
ly. 

The complete Maple code for the computations of appendix A can be found by 
world wide web at www.optsyst.math.kth.se. This makes it very easy for anyone 
to apply Gr6bner bases to his/her own polynomial optimization problem. 

2. Local Optima 

Consider a standard mathematical programming problem : 

minimize f (x )  

iP) s.t. g(x) < 0 
h(x) = O. 

For this problem we have two classical optimality conditions, the Fritz-John con- 
ditions, 

AoVf(x) + AgVg(x) + AhVh(x) = 0 
 gg(x) = o 

h(x) = 0 
(FJ) g(x) <_ 0 

A0, ),g _> 0 

,xg, ),h) r o 
and the Karush-Kuhn-Tucker conditions, (corresponding to Ao -- 1 in FJ), 

I Vf(x) + AgVg(x ) +,XhVh(x) = 0 
) gg(x) = 0 

(KKT) h(x)  = 0 

g(x) _< o 
Ag >_0. 

For the KKT conditions to be necessary for a local optimum, we further need 
some sort of constraint qualification. (For a thourough review of necessary condi- 
tions and constraint qualifications, see e.g. Bazaraa, Sherali & Shetty [1].) 
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In the early days of optimization, the FJ- and KKT-conditions were thought of 
as a means to solve optimization problems. Since it is usually extremely difficult 
to find all solutions to these systems, they have rather beeen used to 'verify' 
stationarity of candidate solutions arrived at by descent methods or similar. 

However, in recent years there have appeared methods that can algebraically 
compute all solutions to polynomial systems, at least in principle. These methods 
axe based on a concept called GrSbner bases. Given a polynomial system of equa- 
tions, the central algorithm, the Buchberger algorithm, computes an equivalent 
system (or, if we use a more efficient, modified algorithm as described later, an 
equivalent set of systems). Under natural conditions, this new system is triangular 
in the way that it has one equation in only one variable, Xl say; one or several 
equations in two variables, x 1 and x2 say, etc. Using this one can first solve for Xl 
in the first equation, getting all possible values of Xl. Then for each value of Xl, 
one can solve for x2, and so on. Along the way one can check for nonnegativity 
and feasibility and terminate infeasible branches of the solution tree. 

The drawback of this 'magic' method of course is that it is very time and space 
consuming. The time complexity grows as 22'~ in the worst case, where n is the 
number of variables. However, it is 'only' 2 n in the case where there are finitely 
many solutions, which is the case we are interested in. (At present, there seems to 
exist no method to determine beforehand whether there are finitely many solutions. 
In fact, Gr6bner bases would be the natural tool to find out.) 

Still, one can often solve systems with a handfull of variables. When it works 
the results are beautiful, sometimes with closed form expressions of all solutions, 
as will be seen below. 

These techniques give an alternative method to compute global optima to some 
problems, and which hence could be used for checking of other more numerical 
methods for global optimization. When there are closed form solutions, these can 
of course be computed numerically with arbitrary precision. 

Finally note that the methods could also be applied to rational optimization 
problems as well, since these give rize to rational optimality conditions, which 
could be scaled to become polynomial. (At the cost of increasing the degrees of 
the polynomials involved, though.) 

3. Gr~ibner Bases 

In this section we give a brief introduction to the theory of Gr~bner bases (for more 
details, see [2]). The theory was developed 1965 by Bruno Buchberger (W. GrSbner 
was his thesis advisor at the University of Innsbruch, Austria) and is roughly an 
algorithm that replaces a system of polynomial equations in several variables with 
a new system which has the same solutions but is easier to study. 

The computation of GrSbner bases generalizes the Euclidian algorithm, Gaus- 
sian elimination and the Sylvester resultant. 
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The algorithm is implemented in many algebraic systems, e.g., Maple, Reduce, 
Scratchpad II, Macsyma and Macaulay. 

We give below a short account of this area, giving all necessary definitions and 
results relevant for application to optimality conditions. 

NOTATION. If x = ( X l , .  �9 �9  Xn) is a list of formal variables, then 

= ' 1  "~2 " '  ~ 

is called a monomial of degree ] et [= al + . . .  + an. The set of monomials in x 
is denoted by Mon(x). 

Let K be afield (Q, ~, C , . . . ,  ). Finite sums like ~ f  ~x (x, where f ~ E K,  are 
called polynomials in x over K. The set of polynomials in a~ over K,  we denote 
by K[x] (or K[xl , . . . ,  x,~]). An ideal I is a subset of  K[x] such that 

(i) f ,  g E I = ~  f + g E I  

(ii) f E K[x] and g E I ~ f 9 ~ I. 

If G C K[x], the smallest ideal containing G, denoted by (G), is 

(G) = { ~  fg" f E K[x],g E G} . 

Hilbert's basis theorem [2, Theorem 5.4, p. 75] states that every ideal I in K[x] is 
finitely generated, that is I = (G) for some finite set G in K[x]. 

DEFINITION. A total ordering < onMon(x) is called admissible if 

(i) l < x  ~ V e t # O  

(ii) x ~ < x ~ =~ x~x "~ < xZx v Vet,/3, 7 inn  n. 

EXAMPLES OF ADMISSIBLE ORDERINGS 

Lexicographic order with Xl > x2 > " "  " > Xn is defined by: x a < x ~ ff there 
exists some i such that ai < fli and a j  = flj Vj < i. 

Degree lexieographie order with xl > x2 > " "  > xn is defined by: x ~ < x # 
if let  I<1/5 I or if Iet I=[/3 I and x a < x # lexicographically. 

Degree reverse lexicographic order with xl > x2 > " "  > xn is defined by: 
x ~ < x f~ if [ e t  [<l /3 [ or if [ et I=[ /3 [ and a~ > fli for some i such that 
ad = fl jVj > i. 

If f ( x )  = ~ f , x  ~ E K[x] we define the leading monomial as lm( f )  = 
x ~ if (x a < x ~ =~ f ~ = 0) and f ~ # 0, and the leading coefficient as lc( f )  = 
f .  if lm(f )  = x ~. 

Given polynomials f and 9 we write 

f -~g h 
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if h = f - cx~g for some c in K and "7 in Nn such that 

x 'qm(g) !~ mon(h) = {x ~ : h ~  # 0}. 

For a subset G of K[x] we write 

f -~c h 

if f -*g h for some g in G. We say that f is reduced to h modulo G. 

EXAMPLE. G -- {x 2 + x~ - 1, 3XlX2 - 1} C_ ]~[Xl, x2] using lexicographic order 
we have lm(Xl 2 + x 2 - 1) = x2, lm(axlx2 - 1) = xlx2. If f = 6x~x2 + Xl, then 
mon(f) = {x~x2,xl}. 

f = 6x3x2 + Xl ""+G 6z31x2 + Xl -- 6XlZ2(Xl 2 + x2 2 - 1) 

= X l  --  6 X l X ~  + 6XlX2 = h~ 

But h can also be reduced with G 

hi ~ c  6xlx2 + xl - 2x 2 - 2(3xlx2 - 1) = xl - 2x~ + 2 = h2 

Now h2 cannot be reduced with G and we write h2 / ,  G- 

DEFINITION. We write f ~ h if there exist polynomials hi such that 

f "-'+G hl  ----~G h2 ---r . . .  "*G h. 

If moreover h / ~ c we say that h is a normal form of f with respect to G. 

DEFINITION. The set of  normal forms of f is denoted by N F ( f ,  G). 
It can be shown that every reduction chain f ---*c hi --~v h2 ~ . . .  is stationary, 

that is hk / ~G for some k. 
Hence N F ( f ,  G) is nonempty V f ,  G. 

DEFINITION. G is called a Gr6bner basis (or Gr6bner base) if every polyno- 
mial has a unique normal form with respect to G (and the underlying admissible 
monomial ordering <)  

i.e., I NF(f ,G) l= 1 Vf �9 K[a~]. 

The above definition would have been of no use if we couldn't find an algorithm 
that to a given finite set F of polynomials computed a Gr~Sbner basis G such that 
(F) = <G). Such a G is called a Gr6bner basis for F. 

The most central and original definition towards such an algorithm is the concept 
of S-polynomial. 
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Let f ,  g E K[x] and choose multiindices ot and 15 such that xalm(f) -- 
xr = LeM(lm(f),  lm(g)). (LMC denotes the least common multiple.) Now 
define the S-polynomial 

Spol(f,g) = x a ~ f  - x ~ g ~  
lc(f) lc(g)" 

We can now state the most essential result in the theory of Gr6bner bases. 

THEOREM 1 (Buchberger). A finite set G of polynomials is a GrSbner basis iff 

Spol(f, g) - -~  0 Vf, g E G. 

COROLLARY 2 (Buchberger's algorithm). The following algorithm computes a 
GrSbner basis G for a given finite set F of polynomials. 

G : = F ;  

B := {(f l , f2)  E G x G:  fl  r f2}; 

while B r 0 

choose (f, g) in B; 

B : = B \ { ( f , g ) } ;  

Spol(f,g) -~5 h / ' 6 ;  

if h ~ 0 then 

B : = B U ( G x  {h}); 

G := G U {h}; 

end; 

end; 

REMARK. By removing all polynomials g in G which are reducible modulo G\g, 
we get a reduced GrSbner basis which is unique if all leading coefficients are one. 

SOME APPLICATIONS OF GROBNER BASES 

Let G be a Gr6bner basis for F ,  with respect to some admissible ordering on 
monomials. 

THEOREM 3 (Ideal membership). Let G be a GrSbner base for F C_ K[x]. A 
polynomial f in K[x] belongs to the ideal (F) iff f can be reduced to zero modulo 
G i.e., 

f E (F) +-~ f --**G O. 
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THEOREM 4 (Elimination). Given F C K[x,  y] = K [ x l ' " x m ,  Yl"'" Yn] and 
an admissible ordering on Mon(x, y) such that xa>y/3 Vc~5~ O. Then if G is 
a GrSbner basis for F, G N K[y] is a GrSbner basis for the elimination ideal 
(F) n K[y]. 

REMARK. If lexicographical order xl > x2 > . . .  > xn is used, then it follows 
from the above theorem that the GrSbner basis is in a sort of triangular form. For 
instance, if there are only finitely many zeroes of F (in the algebraic closure of K,  
i.e. in C if K = Q or ]~), then the Gr6bner basis will have the following structure. 

(i) It contains one polynomial gn(xn) in K[xn] 

(ii) It contains one or several polynomials in K[xn-1, Xn], gn-1,1 ( X n - 1 ,  Xn), 
gn_l,2(Xn_l, Xn),... and so on. 

Thus, to solve the original equation system we first solve for xn in gn(x,~) = O, 
getting the solutions ~ ,1 ,  &m2, . . . .  Then, for fixed &~ we find the common roots 
of gn-l,1, gn-l,2,.. ,  getting solutions Xn-l,l '  &n--l,2, . . . .  and so on. In this way, 
we can compute all solutions to our equation system. Also, note that it is easy to 
eliminate e.g. negative solutions on the way. 

The gr6bner bases of nontrivial systems often contain polynomials with very 
large coeffients, say integers of the order 10 3~ This of course slows down the 
computations and increases the memory requirements. One way to try to remedy 
this, is to try to factor the polynomials generated by Buchberger's algoritm. The 
system then splits into several systems, one for each factor. Then Buchberger's 
algoritm is applied to each of the systems, and so on. This approach in fact is the 
one used by the Maple routine 9 r o b n e r  [ 9 s o l v e ] ,  which we have used in our 
computations. For more details, see [3]. 

4. Example 

We choose a simple 'practical' problem, i.e. one 'with exact solutions unknown', 
from the the problem set [6]. To this problem, no 337, we apply the results above, 
in the form of the GrObner base routines of Maple. 

minimize f ( x )  = 9Xl 2 + x~ + 9x3 2 

(p) s.t. g l (x)  = 1 - XlX2 ~_ 0 

g2(x) = l - x 2 < 0  

g3(x) ---- x 3 - 1 _ < 0 .  

For space reasons we will use the KKT-conditions rather than the FJ-conditions. 
Thus some stationary points not fulfilling a constraint qualifications might escape. 
The application of the FJ-conditions is totally parallel, but more voluminous. In 
the Maple code found at www.optsyst.math.kth.se, we give both options. This par- 
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ticular example however yields the same solution with the use of FJ-conditions 
and it hence is the global minimum. 

(KKT) 

18Xl - -  AlX2 = 0 

2x2 - AlXl  - A2 = 0 

18x3 + A3 = 0 

AI(1 - XlX2)  = 0 

k 2 ( 1 - x 2 )  = 0 

A3(x3-1 )  = 0. 

We use lexiographic order with x > A. In this way we will get a single variable 
equation in A3 and so on. Thus, we can break early on nonnegativity constraints. 
Using the Maple routine g r o b n e r  [ g b a s i s  ], we get the Grtbner base of this 
system. The corresponding equation system is: 

18Xl -- AlX2 = 0 

2 x 2 - A 1 - A 2  = 0 

-36x2 + 18A2 + AlX2 = 0 

-A2+A2x2  = 0 

(1) 18x3 + A3 = 0 

A3~ - 18A~ + 36A2 - 36A1 = 0 

-2A2+A~+AxA2 = 0 

+ = 0 

18A3 + A 2 = O. 
Using instead grobner [gsolve ], which uses the more efficient algorithm 

described briefly in the remark to theorem 4, the system above is reduced to a 
product of the following systems: 

Xl = 0 X l -  1 = 0 3 X l -  X2 = 0 3Xl + X2 = 0 

X 2 -  1 = 0 X 2 -  1 = 0 X 2 --3 = 0 X 2 + 3 ---- 0 

x3- -1  = 0 X3--1 = 0 X3--1 = 0 x3- -1  ---- 0 

(1) A1 = 0 (2) A 1 -  18 = 0 (3) )~1- 6 = 0 (4) )q + 6 = 0 

A 2 - 2  = 0 A2+16  = 0 A2 = 0 A2 = 0 

A3+18  = 0 A3+18  = 0 A3+18 = 0 A3+18  = 0 
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(5) 

(9) 

Xl = 0 Xl ---- 0 

x2 = 0 x 2 -  1 = 0 

x 3 -  1 = 0 x3 = 0 

A 1 = 0 (6) A1 ---- 0 

A2 = 0 A2- 2 = 0 

A 3 + 1 8  = 0 A3 = 0 

3 x l + x 2  = 0 xl = 0 

x22+3 = 0 x2 = 0 

x3 = 0 (10) x3 -- 0 

A1 + 6 = 0 A1 -= 0 

A2 = 0 A2 = 0 

A3 = 0 A3 = 0 

x 1 - 1  = 0 

x 2 - 1  = 0 

x3 = 0  
(7) 

A1 -- 18 -- 0 

A 2 + 1 6  = 0 

A3 ---- 0 

[ 
(8) 

3 X l -  x2 ---- 0 

x22-3  = 0 

x3 = 0  

A 1 - 6  = 0 

A2 = 0 

A3 = 0 

These ten systems are then solved separately, checking bounds and KKT- 
conditions along the way. In all cases, we recursively find the last one-variable 
equation, solve it and substitute its solution(s) in the remaining equations. Systems 
(1)-(5), (7) and (9) are terminated due to violation of nonnegativity conditions. 
The remaining systems hence gives the following points: 

x (6) = (0, 1,0), )~(6) = (0,2,0) 

x(8) = (~3 'x /3 '0 ) '  ,~(s) = (6,0,0) 

 (lo) = (o ,0 ,o ) ,   (lo) = (o ,o ,o ) .  

Checking these points with the remaining Kuhn-Tucker condition, g(x)  <_ O, 
only one point remains : x (s) = (~3'  v/3 '0) '  A(8) = (6,0,0). 

Computing the objective function value we have the following global minimum 
point (due to the fact that the FJ-conditions yield the same solution as mentioned 
above), 

x* = (~3'  v~ ,  0) or approximately, x* = (0.57735027, 1.7320508, 0) 

f ( x* )  = 6 f ( x* )  = 6. 

5. C o m m e n t s  

The Gr6bner base computations are space and time consuming. There are ways to 
partially circumvent this. Usually, the computation of Gr6bner bases using degree 
reverse lexicographic ordering is faster than using lexicographic ordering. But, to 
get the triangulation according to the remark to Theorem 4, we need lexicographic 
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ordering. However, one can speed up the process substantially by first computing a 
Gr6bner base G using degree reverse lexiographic ordering, and then use that one 
to find polynomials in one variable in (G). These can then be used as above. For a 
more thorough coverage of such possibilities, see [5]. 

P r o b l e m  S o l u t i o n  

76 [4] (~ ,  23 ~,o, ~1) 
315 [6] a 4 (~, ~) 
316 [61 (5 x /2 , -5vr2)  

317 [6] RO 

318 [6] RO 

319 [6] RO 

320 [6] RO 
1 1 323 [6] ((�89 + ~v:6)~ - -  1 2(�89 

1 2 1 

(�89 + ~ ) ,  + 4(�89 

324 [6] (5x/ri-0, �89 x/i-0) 

325 [61 (�89 - �89189 + �89 
329 [6] ~-~-~, 

335 [6] 1 22 

484001 l 
242000110 / 

336 [6] (~ 1.43694~ 
lO ~ 5 , /3~,  

4 140 5 V / 5 ~  ) 
27 144369 

337[6] (~3, x/~,O) 

338 [6] ~ (--0.3665301174, 

- 1.662075951, 

2.845341009) 

340[6] (-3, ~o, ~)  5 
341 [6] (4, 2v:2, 2) 

j-(lO0 4v'~j~9 27 ~t2 f~ 343 [6] t~ ~ , 1~5--6oo ~ ,~J : 

t E [ ~  4X/~,1251} 

11)3 
22 
4 
5 

900  - 400v~ 

~ 372.4666057 

,~ 412.7500540 

~ 452.4043956 

~ 485.5314623 

1 I _ 1 2 

1 2 1 2 

_4((�89 + lyre) �89 2 1 +  4 (�89188 
5 

((�89 - �89 v~>2 - x/�89 + � 89  

549353259 {.. ( - - 1 5  - -  ~ ~ ) 3  
8000000 

27 

6 

m, - 10.99280625 

27 
5OO 

- 1 6 ~  
2273913 
4O000O 
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Appendix: Test Examples 

The method outlined in the paper has been coded in Maple. The code can be found 
by world wide web at www.optsyst.math.kth.se. It has been run on a set of test 
problems from [4] and [6]. These test problems are marked as 'practical problems', 
i.e. 'with exact solution unknown'. The listed global optima are computed using 
FJ-conditions. In the table below, RO denotes that the solution is exact, but is given 
in terms of roots of single variable polynomials. This implies that these solutions 
can be computed to arbitrary precision. In example 338, Maple was not able to 
correctly solve a third degree equation exactly. Approximate solution, however, 
gave the solution given. This is different from the one given in [6]. Also note 
example 343, where the global optimum is a curve, identified by our method. 
Except for examples 338 and 343 we have got the same solutions as [4] and [6] 
(up to numerical precision). 
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